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A one-photon excited fluorescence detection scheme that employs fluorescence-imaging techniques is proposed
to determinek′-J′ correlations of reaction products. To extract information ofk′-J′ correlations from the
fluorescence intensities of image patterns, a density matrix formalism is utilized to analyze both the linearly
polarized and the circularly polarized detection schemes of a one-photon excited fluorescence process, in
which a linearly polarized excitation laser is employed. Explicit fluorescence intensity formulas are given
for various detection schemes and transition sequences. For the detection scheme that probes linearly polarized
fluorescence photons, state multipoles of the density matrix of reaction products along various scattering
anglesθ, that is, population (F0

0(θ)) and alignment parameters (F0
2(θ), F1

2(θ), F2
2(θ), F0

4(θ), F1
4(θ), F2

4(θ),
F3
4(θ), F4

4(θ)), can be uniquely determined by 12 independent measurements of the intensities of fluorescence
imagings as functions of probe angles and transition sequences. Experiments which measure circularly polarized
fluorescence photons can provide information on orientation parameters (F1

1(θ), F1
3(θ), F3

3(θ)) in the present
detection scheme. Contributions of the individual term in the intensity formulas to the fluorescence imagings
have been assessed by numerical calculations. A pattern recognition of fluorescence images of photofragments
with v-J correlations has also been established.

I. Introduction

Correlations of vector quantities of products from photo-
fragmentation processes or chemical reactions have fascinated
the scientific community in chemical dynamics.1-3 Since the
pioneer studies by Herschbach and co-workers,4-6 researchers
have recognized the important role of vector correlations in
probing detailed dynamics of molecular collisions. In particular,
Case et al.6 have analyzed the laser-induced fluorescence (LIF)
process of a polarized ensemble. In recent years, optical
detection, especially Doppler spectroscopy,7-11 has been heavily
emphasized to reveal thev-J correlations1-3 of reaction
products. Dixon12 and Hall et al.13 have independently devel-
oped theoretical frameworks to analyze Doppler profiles in terms
of bipolar moments or elements of the density matrix of
photofragments.
In a series of investigations, Zare and co-workers14-19 have

established a complete formalism to determine population,
orientation, and alignment moments of reaction products by LIF
or resonance-enhanced multiphoton ionization (REMPI) detec-
tion schemes. Correlations of angular momenta with other
vectorial observables have not been treated explicitly in these
works. Recently, Orr-Ewing, Simons, Hall, and co-workers
have employed Doppler spectroscopy to study vector correla-
tions in photo-initiated bimolecular reactions.20-25 Zare and co-
workers have demonstrated the power of the REMPI detection
scheme in the study of state-to-state differential cross sections26-29

and the three-dimensional (3D) velocity distribution of prod-
ucts30 in photo-initiated bulb reactions. A theoretical framework
that deals with the problem of the angular momentum polariza-
tion of products in these photo-initiated reactions has been
reported by Shafer-Ray et al.31

Instead of projecting all the 3D information on angular
distributions and angular momentum polarizations in a specific
quantum state onto the probe laser direction from an expanding
Newton sphere of reaction products, one can employ alterna-

tively two-dimensional (2D) ion-imaging techniques32,33or the
slicing technique of fluorescence imaging34-38 in the study of
reaction dynamics. In the present report, we propose a one-
photon excited fluorescence (1+ 1 LIF) detection scheme to
determine k′-J′ correlations of reaction products. From
detailed analyses, we will show thatk′-J′ correlations are best
studied by fluorescence imaging to avoid an average of detected
signals over spatial profiles of product distributions.
In section II, density matrix theory for polarized reaction

products is reviewed. Our proposed detection scheme is
elucidated in section III. The theoretical framework is devel-
oped in subsequent sections to acquire useful formulas for
fluorescence intensity as a function of experimental parameters.
To assess the contribution of the individual term in the intensity
formulas to the fluorescence image pattern, numerical results
of these intensity factors under various experimental conditions
are reported. To illustrate the application of the present
formalism, the simulated fluorescence image patterns in a 1+
1 LIF detection scheme are presented for photofragments with
either a cartwheel motion (v ⊥ J) or a helicopter motion (v |
J).

II. Density Matrix of Reaction Products

To treat the polarization properties of optical transitions and
molecular ensembles, the density matrix formalism3,39-44 has
been proven to be a powerful theoretical tool. In the present
section, we consider a distribution of reaction products in a
specific quantum state over a Newton sphere, where the
expansion rate of such a sphere is determined by the conserva-
tion of energy. In a polarized photodissociation experiment
under crossed laser beam-molecular beam conditions, the
angular distribution of photofragments on the Newton sphere
should display an axial symmetry with respect to the polarization
direction of the photolysis laser, provided that the precursors
in the molecular beam are unaligned. It is well-known that the
centers of the expanding Newton spheres of photofragments
move at velocities identical to those of their precursors.X Abstract published inAdVance ACS Abstracts,March 1, 1997.
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Realizing the moving direction of the center of the Newton
sphere and its axially symmetric axis, one should slice the sphere
with a laser sheet along a unique plane defined by the
polarization direction of the photolysis laser and the moving
direction of the parent molecules. Adopting this slicing scheme,
we can obtain useful information of angular distributions, recoil
velocities, and angular momentum polarizations of photofrag-
ments in the center-of-mass frame.34,35 Similarly, one should
slice the Newton sphere of reaction products along the crossing
plane in a crossed beam chemical reaction, in which the angular
distribution of products on the Newton sphere displays an axial
symmetry with respect to the relative velocity vector.
In Figure 1, we depict an instantaneous pattern of number

densities of product A in a specific quantum state from a sliced
section of the Newton sphere at a chosen delay time, in
conjunction with a reference coordinate system, where product
A is generated either by a photofragmentation process AB

98
hν

A + B or a bimolecular reaction C+ D f A + B. The
Z-axis of this space-fixed frame (SFF) is defined along either
the polarization directionE of the photolysis laser in a
photodissociation experiment or the relative velocity vectork
in a crossed beam chemical reaction. For product A scattered
alongk′, the number density functionN(k̂‚k̂′) ) N(cosθ) t
N(θ) represents the angular distribution, where the caret denotes
a unit vector andθ is the angle betweenk andk′. Alternatively,
N(θ) is a legitimate measurement onk-k′ (or E-k′) correla-
tions.
The internal state distribution of product A over the magnetic

sublevels can display polarization properties. Assuming that
the ground state product A has populations in an angular
momentum state|aJ1M1〉, one can expand its density matrix
Fg(θ) in terms of the irreducible tensor operatorTq1

(k1)(aJ1,aJ1)

wheregFq1
k1(θ) is a state multipole40 and quantum numbera is a

label of the state vector other than the angular momenta. In
general, the product angular momentumJ′ displays correlations
with respect to the recoil directionk′. Naturally, one should
denote the density matrixFg as a function ofθ. In the above
equation,Tq1

(k1)(aJ1,aJ1) is defined by40

wherek̂1 ) (2k1 + 1)1/2 and

is a 3-j symbol.41

It should be noted that the slicing technique of fluorescence
imaging destroys the cylindrical symmetry of internal state
distributions; that is, molecules which are probed by the laser

sheet are only a subset of the original ensemble. Thus, we have
to examine the inherent symmetry consequences of the colli-
sional process. For nonchiral reactants, the scattering plane
defined byk andk′ displays a symmetry of reflection invariance.
From the basic properties of the density matrix under reflection
in the scattering plane, we have40

and

It is straightforward to derive thatgFq
k is real whenk is even,

gFq
k is purely imaginary whenk is odd, andgF0

k(kdodd) ) 0.
For a 1+ 1 LIF detection scheme, state multipoles fromk ) 0
up tok ) 4 can be determined in principle.14 From the above
two equations, we will focus on the functional dependences of
gF0

0(θ), igF1
1(θ) ()igF-1

1 (θ)), gF0
2(θ), gF1

2(θ) ()-gF-1
2 (θ)), gF2

2(θ)
()gF-2

2 (θ)), igF1
3(θ)()igF-1

3 (θ)), igF2
3(θ)()-igF-2

3 (θ)),
igF3

3(θ)()igF-3
3 (θ)), gF0

4(θ), gF1
4(θ)()-gF-1

4 (θ)), gF2
4(θ)()gF-2

4

(θ)), gF3
4(θ)()-gF-3

4 (θ)), andgF4
4(θ)()gF-4

4 (θ)) on experimen-
tal parameters. In total, there are 13 independent state multi-
poles to be determined in a 1+ 1 LIF imaging experiment.4,45

Among them,igF1
1(θ), igF1

3(θ), igF2
3(θ), and igF3

3(θ) are imagi-
nary numbers. The alignment parametersAq

(k) which have
been commonly adopted in the literature on angular momentum
polarizations are proportional to the corresponding state mul-
tipoles with the same rank and component. The relationship
betweenAq

(k) andFq
k can be found in a review article by Orr-

Ewing and Zare.3

III. Detection Scheme of k′-J′ Correlations

A schematic diagram of the proposed detection scheme of
k′-J′ correlations of reaction products is depicted in Figure
2a. The propagation direction (along the unit vectorÛP) of the
probe laser sheet, the polarization direction of a linearly
polarized photolysis laser beam (along the unit vectorÊ), and
the orientation of a 2D imaging detector (along the unit vector
Ûi) are mutually orthogonal to each other. By mounting an
appropriate set of polarizers in front of the imaging detector,
we can take fluorescence images using either linearly or
circularly polarized photons. For a crossed beam bimolecular
reaction,Ê is replaced by the relative velocity unit vectork̂.
The probe laser is linearly polarized, and its polarization
direction makes an angleø with respect to theÊ - ÛP plane.
The transformation between the probe laser reference frame and
the SFF is depicted in Figure 2b.
To simplify the sequence of frame transformations, the

quantization axis of products is defined to be the polarization
direction of the photolysis laser or the relative velocity vector,
no matter which recoil directionk̂′ is. In other words, the Euler
angles which transform the SFF to a reference frame with its
Z′-axis along the polarization direction of the probe laser sheet
are (π/2, ø, 0) for every recoil directionk̂′ (see Figure 2b).
Because the density matrixFg(θ) is a function of the scattering
angleθ, this convention of the quantization axis does not lose
its generality in our framework development.
From the above analysis, thek′-J′ correlations are measure-

ments of the variation of angular momentum polarizations of
products with respect to the recoil directionk′. In subsequent
sections, we will prove that the experimental determination of
the state multipoles of the density matrix relies on the functional
dependences of fluorescence images with respect to the probe
angleø, the polarization states of fluorescence photons, and the
transition sequence in the 1+ 1 LIF. The key procedure of

Figure 1. Sliced section of the Newton sphere of reaction products.

Fg(θ) ) ∑
k1q1

gFq1
k1(θ)Tq1

(k1)(aJ1,aJ1) (1)

Tq1
(k1)(aJ1,aJ1) )

∑
M1M′1

(-1)J1-M1k̂1(J1 J1 k1
M1 -M′1 -q1)|aJ1M1〉〈aJ1M′1| (2)

(. . .
. . . )

gFq
k ) (-1)k+q gF-q

k (3)

gFq
k ) (-1)k gFq

k* (4)
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this detection scheme is to monitor the intensity variations of
the image patterns from a specific transition sequence by rotating
the polarization direction of the probe laser sheet.

IV. Density Matrix of the Excited State

The energy level diagram which illustrates the 1+ 1 LIF
detection scheme is depicted in Figure 3. The probe laser is
tuned to induce the transition|bJ2M2〉 r |aJ1M1〉 of product A,
while spontaneous emissions from|bJ2M2〉 f |cJ3M3〉 are
monitored. In the reference frame defined by the probe laser
(see Figure 2b),Fg(θ) in eq 1 is transformed to41

where the tensor operatorT̃q2
(k1)(aJ1,aJ2) is defined in a refer-

ence frame with its quantization axis along the polarization

direction of the probe laser. In the above equation,dq1q2
k1 is a

reduced rotation matrix.41

For an optical transition|bJ2M2〉 r |aJ1M1〉, the excited state
density matrixFe(θ) is42-44

whereε̂‚r is a transition dipole operator.Fe(θ) can be expanded
in terms of the irreducible tensor operatorT̃q3

(k2)(bJ2,bJ2)
†.

From eq 6, the state multipoleeFq3
k2(θ) is given by

For a linearly polarized probe laser,ε̂‚r ) r0 ) ∑tD0t
1 (Ω)* r̃ t,

wherer̃t is a spherical dipole operator in a molecule-fixed frame.
If the product A is a symmetric top, the state vector|aJ1M1〉 )
|a〉|J1K1M1〉 ) (-1)M1-K1[(2J1 + 1)/8π2]1/2D-M1-K1

J1 (Ω)|a〉,
where|a〉 is a vibronic wave function of the ground electronic
state. From angular momentum algebra, one can prove easily
that the matrix element〈bJ2M′2|ε̂‚r |aJ1M1〉 is42-44

From eqs 7 and 8, one has

where|m1|2 is a transition amplitude of the product A and

The selection rules on∆K can be read directly from the above
equation for parallel (t ) 0) or perpendicular transitions (t )
(1).
The sum over the magnetic quantum numbers of the product

of four 3-j symbols in eq 9 can be contracted by angular
momentum algebra. One can prove easily that41

Figure 2. (a) Schematic diagram of experimental arrangement to study
k′-J′ correlations of reaction products. (b) Transformation between
the probe laser reference frame and the SFF.

Figure 3. Energy level diagram in a 1+ 1 LIF detection scheme.

Fg(θ) ) ∑
k1q1q2

gFq1
k1(θ) Dq1q2

k1 (π

2
,ø,0)* T̃q2(k1)(aJ1,aJ1)

) ∑
k1q1q2

gFq1
k1(θ) exp(iπq1/2) dq1q2

k1 (ø) T̃q2
(k1)(aJ1,aJ1) (5)

Fe(θ) ) ε̂‚rFg(θ) (ε̂‚r )
†

) ∑
k1q1q2
M1M′1

(-1)J1-M1k̂1(J1 J1 k1
M1 -M′1 -q2)gFq1k1(θ) ×

exp(iπq1/2) dq1q2
k1 (ø) ε̂‚r |aJ1M1〉〈aJ1M′1|(ε̂‚r )† (6)

eFq3
k2(θ) ) ∑

k1q1q2
M1M′1M2M′2

(-1)J1+J2-M1-M2k̂1k̂2(J1 J1 k1
M1 -M′1 -q2) ×

(J2 J2 k2
M2 -M′2 -q3)〈bJ2M′2|ε̂‚r |aJ1M1〉 ×

〈aJ1M′1|(ε̂‚r )†|bJ2M2〉 exp(iπq1/2) dq1q2
k1 (ø) gFq1

k1(θ) (7)

〈bJ2M′2|ε̂‚r |aJ1M1〉 )

∑
t

(-1)M1-K1+tĴ1Ĵ2(J2 1 J1
M′2 0 -M1

) ×
(J2 1 J1
K2 -t -K1

)〈b|r̃ t|a〉 (8)

eFq3
k2(θ) ) ∑

k1q1q2
M1M′1M2M′2

(-1)J1+J2k̂1k̂2Ĵ1
2Ĵ2

2(J1 J1 k1
M1 -M′1 -q2) ×

(J2 J2 k2
M2 -M′2 -q3)(J2 1 J1

M′2 0 -M1
) ×

(J2 1 J1
M2 0 -M′1)|m1|2 exp(iπq1/2) dq1q2

k1 (ø) gFq1
k1(θ) (9)

|m1|2 ) ∑
t

(J2 1 J1
K2 -t -K1

)2|〈b|r̃ t|a〉|2 (10)
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where

is a 9-j symbol.41 From the transformation properties ofFg(θ)
andε̂‚r under a symmetry operation of reflection in theX′ - Y′
plane (see Figure 2b), one can prove that a constraint has to
impose onFe(θ), that is, the sum of rank indices,k1 + k2, must
be an even, positive integer for the present excitation scheme.
For later developments, we transformT̃-q2

(k2) (bJ2,bJ2)
† back to

the SFF. From the transformation properties of tensor operators,
we have41

The above equation can be simplified further by contracting
the rotation matrices and employing the orthorgonality relation-
ship of 3-j symbols. Thus, we have

Examining the 3-j symbol

in the above equation, we realize thatx must be 0 or 2.
Accordingly, the final form of the excited state density matrix
in the SFF is given by

where

is a 6-j symbol.41

V. Fluorescence Detection Operator

To detect the transition|bJ2M2〉 f |cJ3M3〉, one has to set up
the fluorescence detection operatorF(ε̂d)42-44 before taking the
trace of the productFe(θ)F. F(ε̂d) is given by

The fluorescence detection operatorF(ε̂d) can be expanded in
terms of the irreducible tensor operatorsTq3

(k3)(bJ2,bJ2). These
tensor operators are expressed in the same basis functions as
those ofFe(θ); in addition,Fe(θ) andF(ε̂d) have to be defined
in an identical reference frame whenTr[FeF] is taken. Thus,
we should examine the reference frames of various detection
schemes and their Euler angles of transformations to the SFF.
In Figure 4a, we depict anx′y′z′-frame for the detection mode
of linearly polarized fluorescence photons. Thez′-axis is the
direction of the polarization direction, while the propagation
direction of fluorescence photons is along they′-axis. The Euler
angles which transform thex′y′z′-frame back to the SFF are (0,
-ψ, 0), whereψ is the angle between thez′ and Z-axis.
Similarly, anx′′y′′z′′-frame for the detection mode of circularly
polarized fluorescence photons is depicted in Figure 4b. The
propagation direction of fluorescence photons is along thez′′-
axis in this mode. To transform thex′′y′′z′′-frame to the SFF,
the Euler angles are (-π/2, -π/2, -π/2).
A. Linearly Polarized Detection Mode. In the detection

frame, the dipole transition operator is

whereq ) 0 and(1 denote linearly polarized and circularly
polarized photons, respectively. Using a similar procedure
presented in section IV, we can prove that

Fe(θ) ) ∑
k1k2x
q1q2

(-1)k2+1k̂1k̂2Ĵ1
2Ĵ2

2x̂2(k1 x k2
-q2 0 q2) ×

(x 1 1
0 0 0){k1 k2 x

J1 J2 1
J1 J2 1}|m1|2×

exp(iπq1/2) dq1q2
k1 (ø) gFq1

k1(θ) T̃-q2
(k2) (bJ2,bJ2)

† (11)

{. . .
. . .
. . . }

Fe(θ) ) ∑
k1k2x
q1q2q3

(-1)k2+1k̂1k̂2Ĵ1
2Ĵ2

2x̂2(k1 x k2
-q2 0 q2) ×

(x 1 1
0 0 0){k1 k2 x

J1 J2 1
J1 J2 1}|m1|2×

exp[iπ(q1 + q3)/2] dq1q2
k1 (ø) dq3,-q2

k2 (ø) gFq1
k1(θ) Tq3

(k2)(bJ2,bJ2)
†

(12)

Fe(θ) ) ∑
k1k2x
q1q3

(-1)k2+1k̂1k̂2Ĵ1
2Ĵ2

2x̂2(k1 k2 x
q1 q3 -q1 - q3) ×

(x 1 1
0 0 0){k1 k2 x

J1 J2 1
J1 J2 1}|m1|2×

exp[iπ(q1 + q3)/2] d-q1-q3,0
x (ø) gFq1

k1(θ) Tq3
(k2)(bJ2,bJ2)

† (13)

(x 1 1
0 0 0)

Fe(θ) ) ∑
k1q1

(-1)J1+J2+k1+q1+1 3-1Ĵ1
2Ĵ2

2{J1 J1 k1
J2 J2 1 } ×

|m1|2 gFq1
k1(θ) T-q1

(k1) (bJ2,bJ2)
† + ∑

k1k2
q1q3

(-1)k2+1(103 )1/2k̂1k̂2Ĵ12Ĵ22×

(k1 k2 2
q1 q3 -q1 - q3){k1 k2 2

J1 J2 1
J1 J2 1}|m1|2×

exp[iπ(q1 + q3)/2] d-q1-q3,0
2 (ø) gFq1

k1(θ) Tq3
(k2)(bJ2,bJ2)

† (14)

Figure 4. (a) Transformation between the reference frame of the
linearly polarized detection mode and the SFF. (b) Transformation
between the reference frame of the circularly polarized detection mode
and the SFF.

{. . .
. . . }

F(ε̂d) ) Ĵ3
-2∑

M3

ε̂d‚r |cJ3M3〉〈cJ3M3|(ε̂d‚r )† (15)

ε̂d‚r ) rq ) ∑
t

Dqt
1 (Ω)* r̃ t (16)

2528 J. Phys. Chem. A, Vol. 101, No. 14, 1997 Chen and Chang



where Fh and Th0(k) are defined in thex′y′z′-frame and lpp
denotes the linearly polarized detection mode. For brevity, we
have denotedTh0(k)(bJ2,bJ2) by Th0(k). In the above equation, the
transition amplitude|m2|2 is given by

After transformingFh back to the SFF, we obtain

For an unpolarized detection mode, we can sum the contribu-
tions of two mutually orthogonal, linearly polarized detection
operators. Accordingly, we have

B. Circularly Polarized Detection Mode. For the left
circularly polarized detection mode, we can prove that

whereFC and TC 0
(k) are defined in thex′′y′′z′′-frame and cpp

denotes the circularly polarized detection mode. After trans-
forming FC (cpp,L) back to the SFF, we obtain

For the right circularly polarized detection mode, its fluorescence
detection operatorF(cpp,R) is obtained by changing the phase
factor of the second term of eq 22 to (-1)J2+J3. From eqs 20
and 22, it is evident that

The imaginary numberi in eqs 22 and 23 should be noted.

VI. Fluorescence Intensity

A. Fluorescence Intensity Functions. The fluorescence
intensity is proportional to the trace of the productFe(θ)F, while
Fe(θ) andF should be expanded in an identical reference frame
by the same basis set of irreducible tensor operators. In the
previous sections, we have carefully derived the expressions of
the excited state density matrix and the fluorescence detection
operators that satisfy these requirements. To derive the
fluorescence intensity function, one needs the following rela-
tionship:

From eqs 14, 19, and 24, we can derive the fluorescence
intensity functionI(lpp,ψ,ø,θ) for the linearly polarized detection
mode with an arbitrary polarization angleψ

wherek1 ) 0, 2, 4 andq1 g 0. Becausek1 + k2 is constrained
to be an even, positive integer, only even rank state multipoles
contribute toI(lpp,ψ,ø,θ). Explicit expressions of the intensity
factorsXq1

k1(lpp,ψ,ø) are listed in Table 1. Whenψ ) 54.7° (a
magic angle), the last term in eq 19 is null. The corresponding
fluorescence intensity functionI(lpp,ψ)54.7°,ø,θ) is given by

Fh (lpp,ψ) ) ∑
k

(-1)J2+J3k̂Ĵ2
2(1 1 k
0 0 0) ×

{1 1 k
J2 J2 J3}|m2|2Th 0

(k)(bJ2,bJ2)

) [13Ĵ2Th 0
(0) + (-1)J2+J3(23)

1/2
Ĵ2
2{1 1 2
J2 J2 J3} ×

Th 0
(2)]|m2|2 (17)

|m2|2 ) ∑
t

(J2 1 J3
K2 -t -K3

)2 |〈b|r̃ t|c〉|2 (18)

F(lpp,ψ) ) [13Ĵ2T 0
(0) + (-1)J2+J3(12)Ĵ22{1 1 2

J2 J2 J3} ×
sin2 ψ (T 2

(2) + T-2
(2)) + (-1)J2+J3+1Ĵ2

2{1 1 2
J2 J2 J3} ×

sinψ cosψ (T 1
(2) - T-1

(2)) + (-1)J2+J3(16)
1/2
Ĵ2
2×

{1 1 2
J2 J2 J3}(3 cos2 ψ - 1)T 0

(2)]|m2|2 (19)

F(unpol)) F(lpp,ψ)0)+ F(lpp,ψ)π/2) )

{23Ĵ2T 0
(0) + (-1)J2+J3Ĵ2

2{1 1 2
J2 J2 J3}[12(T 2

(2) + T-2
(2)) +

(16)
1/2
T 0
(2)]}|m2|2 (20)

FC (cpp,L)) ∑
k

(-1)J2+J3+1k̂Ĵ2
2(1 1 k

-1 1 0) ×
{1 1 k
J2 J2 J3}|m2|2 TC 0

(k)

) [13Ĵ2TC 0
(0) + (-1)J2+J3(12)

1/2
Ĵ2
2{1 1 1
J2 J2 J3} ×

TC 0
(1) + (-1)J2+J3+1(16)

1/2
Ĵ2
2{1 1 2
J2 J2 J3}TC 0

(2)]|m2|2 (21)

F(cpp,L)) [13Ĵ2T 0
(0) + (-1)J2+J3+1 i

2
Ĵ2
2{1 1 1
J2 J2 J3} ×

(T 1
(1) + T-1

(1)) + (-1)J2+J3
Ĵ2
2

4 {1 1 2
J2 J2 J3}(T 2

(2) + T-2
(2)) +

(-1)J2+J31
2(
1
6)

1/2
Ĵ2
2{1 1 2
J2 J2 J3}T 0

(2)]|m2|2 (22)

TABLE 1: Factors Xq1
k1(lpp,ψ,ø) in the Fluorescence

Intensity Function I (lpp,ψ,ø,θ)

Xq1
k1(lpp,ψ,ø)

X0
0 1/9Ĵ1Ĵ22 + (-1)J1+J3(1/3)Ĵ1Ĵ24A2A4(3 cos2 ψ cos2 ø - 1)

X0
2 (-1)J1+J2(1/6)(2/3)1/2Ĵ12Ĵ22A1(3 cos2 ø - 1)+

(-1)J1+J3+1(1/3)(1/6)1/2Ĵ12Ĵ24A2A3(3 cos2 ψ - 1)+
(-1)J2+J3(10/3)(1/14)1/2Ĵ12Ĵ24A2A5(6 cos2 ψ cos2 ø -
3 cos2 ψ - 3 cos2 ø + 2)

X1
2 (-1)J1+J3(2/3)Ĵ12Ĵ24A2A3 sinψ cosψ +

(-1)J2+J3+110(1/21)1/2Ĵ12Ĵ24A2A5 sinψ cosψ (3 cos2 ø - 2)

X2
2 (-1)J1+J2+1(1/3)Ĵ12Ĵ22A1 sin2 ø +

(-1)J1+J3+1(1/3)Ĵ12Ĵ24A2A3 sin2 ψ +
(-1)J2+J310(1/21)1/2Ĵ12Ĵ24A2A5(cos2 ψ - cos2 ø)

X0
4 (-1)J2+J3+1(1/2)(5/14)1/2Ĵ12Ĵ24A2A6(17 cos2 ψ cos2 ø -

5 cos2 ψ - 5 cos2 ø + 1)

X1
4 (-1)J2+J35(1/14)1/2Ĵ12Ĵ24A2A6 sinψ cosψ (5 cos2 ø - 1)

X2
4 (-1)J2+J35(1/7)1/2Ĵ12Ĵ24A2A6(cos2 ψ - cos2 ø)

X3
4 (-1)J2+J3+15(1/2)1/2Ĵ12Ĵ24A2A6 sinψ cosψ sin2 ø

X4
4 (-1)J2+J3(5/2)Ĵ12Ĵ24A2A6 sin2 ψ sin2 ø

F(cpp,L)) 1
2[F(unpol)+

(-1)J2+J3+1iĴ2
2{1 1 1
J2 J2 J3}(T 1

(1) + T-1
(1))|m2|2] (23)

Tr[Tq1

(k1)(bJ2,bJ2)
† Tq2

(k2)(bJ2,bJ2)] ) δk1k2
δq1q2

(24)

I(lpp,ψ,ø,θ) ) Tr[Fe(θ) F(lpp,ψ)]

) [∑
k1q1

Xq1
k1(lpp,ψ,ø) gFq1

k1(θ)]|m1|2|m2|2 (25)

I(lpp,ψ)54.7°,ø,θ) )
[ ∑
k1)0,2,4
q1g0

Xq1
k1(lpp,ψ)54.7°,ø) gFq1

k1(θ)]|m1|2 |m2|2 (26)
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where explicit expressions of the intensity factors
Xq1
k1(lpp,ψ)54.7°,ø) are listed in Table 2. Examining the

ø-dependence of these intensity factors in Table 2, we realize
that variousXq1

k1 are linear combinations of 1 and cos2 ø. It
implies that only intensity measurements at two different probe
angles ø for a chosen polarization angleψ are linearly
independent; in addition, all the measurements at other probe
angles are redundant and can improve solely the accuracy of
the determination ofgFq1

k1(θ).
For an unpolarized detection mode, the fluorescence intensity

function I(unpol,ø,θ) can be obtained from eqs 14, 20, and 24

wherek1 ) 0, 2, 4, and odd components are absent. In Table
3, we list the explicit expressions of the intensity factors
Xq1
k1(unpol,ø,θ) for the image simulations.
Similarly, we can cast the fluorescence intensity function for

the circularly polarized detection mode into the following form:

wherek1 ) 1, 3 and even components are absent. In other
words, gF1

1(θ), gF1
3(θ), and gF3

3(θ) can be determined in a
circularly polarized detection mode, while the orientation
parametergF2

3(θ) is excluded. Explicit expressions ofXq1
k1

(cpp,L,ø) are listed in Table 4, andI(unpol,ø,θ) in the above
equation is given in eq 27. Various 6-j and 9-j symbols which
are abbreviated by the notationsAn in Tables 1-4 are defined
explicitly in Table 5.

B. Intensity Factors and Practical Considerations. The
relative contributions of intensity factors in the fluorescence
intensity function open a question of how accurately one can
determine the various state multipoles. To assess their contribu-
tions, we have programmed the intensity factorsXq1

k1(lpp,ψ )
54.7°,ø) in Table 2 and calculated their numerical values as
functions of the probe angleø and transition sequences. A few
representative results are depicted in Figures 5 and 6. The
patterns of the intensity factors as functions of the probe angle
ø resemble one another for a selected∆J transition sequence
(J1 f J2 f J3), no matter whether the quantum numberJ1 is
small or large. Examining Figures 5 and 6, we notice that
Xq1
4 ’s contribute relatively less than their correspondingXq1

2 ’s
do, except in the case of the transitionJ1 f J2 f J3 ) (2 f 1
f 0). Judging from the relative contributions and functional
dependences on the probe angleø of the intensity factors
Xq1
4 , we anticipate that the experimental determination of the

alignment parameters (gFq1
4 (θ)) will be difficult, especially for

internal states with largeJ1. Similarly, we have calculated
numerical values ofXq1

k1(cpp,L,ø) in Table 4 as functions of the
probe angleø and transition sequences. Prototypical results are
presented in Figures 7 and 8.
The observed image patterns in a fluorescence-imaging

experiment depend on other parameters, that is, the collection
efficiency of the 2D imaging detector, the laser energies, the
Franck-Condon factors, and the angular distribution function
N(θ). As an example, the experimentally measured
Xq1
k1(lpp,ψ)54.7°,ø,θ) should be given by

wherec is a proportionality constant.
In the case of the linearly polarized detection mode, we can

set up a simultaneous equation ofgFq1
k1(θ) by measuring

I(lpp,ψ1,ø1,θ) andI(lpp,ψ1,ø2,θ) for a chosen polarization angle
ψ1, whereø1 and ø2 * 0° or 90°. These two measurements
can be normalized by the experimentally measured pattern atø
) 0°. Thus, we have

TABLE 2: Factors Xq1
k1(lpp,ψ)54.7°,ø) in the Fluorescence

Intensity Function I (lpp,ψ ) 54.7°,ø,θ)

Xq1
k1(lpp,ψ ) 54.7°,ø)

X0
0 1/9Ĵ1Ĵ22 + (-1)J1+J3+1(1/3)Ĵ1Ĵ24A2A4 sin2 ø

X0
2 (-1)J1+J2(1/6)(2/3)1/2Ĵ12Ĵ22A1(3 cos2 ø - 1)+

(-1)J2+J3(5/3)(2/7)1/2Ĵ12Ĵ24A2A5 sin2 ø
X1
2 (-1)J1+J3(2/9)(2)1/2Ĵ12Ĵ24A2A3 +

(-1)J2+J3+1(10/3)(2/21)1/2Ĵ12Ĵ24A2A5(3 cos2 ø - 2)

X2
2 (-1)J1+J3+1(2/9)Ĵ12Ĵ24A2A3 + (-1)J1+J2+1(1/3)Ĵ12Ĵ22A1 sin2 ø +

(-1)J2+J3+1(10/3)(1/21)1/2Ĵ12Ĵ24A2A5(3 cos2 ø - 1)

X0
4 (-1)J2+J3(1/3)(5/14)1/2Ĵ12Ĵ24A2A6 sin2 ø

X1
4 (-1)J2+J3(5/3)(1/7)1/2Ĵ12Ĵ24A2A6(5 cos2 ø - 1)

X2
4 (-1)J2+J3+1(5/3)(1/7)1/2Ĵ12Ĵ24A2A6(3 cos2 ø - 1)

X3
4 (-1)J2+J3+1(5/3)Ĵ12Ĵ24A2A6 sin2 ø

X4
4 (-1)J2+J3(5/3)Ĵ12Ĵ24A2A6 sin2 ø

TABLE 3: Factors Xq1
k1(unpol,ø) in the Fluorescence

Intensity Function I (unpol,ø,θ)

Xq1
k1(unpol,ø)

X0
0 2/9Ĵ1Ĵ22 + (-1)J1+J3(1/6)Ĵ1Ĵ24A2A4(3 cos 2ø - 1)

X0
2 (-1)J1+J3+1(1/3)(1/6)1/2Ĵ12Ĵ24A2A3 +

(-)J2+J3(10/3)(1/14)1/2Ĵ12Ĵ24A2A5 +
(-1)J1+J2(1/3)(2/3)1/2Ĵ12Ĵ22A1(3 cos2 ø - 1)

X2
2 (-1)J1+J3+1(1/3)Ĵ22Ĵ24A2A3 +

(-1)J1+J3+1(2/3)Ĵ12Ĵ22A1 sin2 ø +
(-1)J2+J3+110(1/21)1/2Ĵ12Ĵ24A2A5(2 cos2 ø - 1)

X0
4 (-1)J2+J3+1(1/2)(5/14)1/2Ĵ12Ĵ24A2A6(7 cos2 ø - 3)

X2
4 (-1)J2+J3+15(1/7)1/2Ĵ12Ĵ24A2A6(2 cos2 ø - 1)

X4
4 (-1)J2+J3(5/2)Ĵ12Ĵ24A2A6 sin2 ø

I(unpol,ø,θ) ) [∑
k1q1

Xq1
k1(unpol,ø,θ) gFq1

k1(θ)]|m1|2 |m2|2 (27)

I(cpp,L,ø,θ) ) Tr[Fe(θ) F(cpp,L)])
1

2
I(unpol,ø,θ) + [∑

k1q1

Xq1
k1(cpp,L,ø) gFq1

k1(θ)]|m1|2 |m2|2 (28)

TABLE 4: Factors Xq1
k1(cpp,L,ø) in the Fluorescence

Intensity Function I (cpp,L,ø,θ)

Xq1
k1(cpp,L,ø)

X1
1 (-1)J1+J3+1(1/3)Ĵ12Ĵ24A7A8 +

(-1)J2+J3+1(1/2)Ĵ12Ĵ24A7A9(1- 3 cos 2ø)
X1
3 (-1)J2+J3+1(1/2)Ĵ12Ĵ22A7A10(3- 7 cos2 ø)

X3
3 (-1)J2+J3+1(1/2)(15)1/2Ĵ12Ĵ24A7A10 sin2 ø

TABLE 5: Explicit Forms of An

A1 ) {1 1 2
J1 J1 J2} A2 ) {1 1 2

J2 J2 J3} A3 ) {J1 J1 2
J2 J2 1}

A4 ) {1 1 2
J2 J2 J1} A5 ) {2 2 2

J1 J2 1
J1 J2 1

} A6 ) {4 2 2
J1 J2 1
J1 J2 1

}
A7 ) {1 1 1

J2 J2 J3} A8 ) {J1 J1 1
J2 J2 1} A9 ) {1 1 2

J1 J2 1
J1 J2 1

}
A10 ) {3 1 2

J1 J2 1
J1 J2 1

}

Iexp(lpp,ψ)54.7°,ø,θ) )

c[∑
k1q1

Xq1
k1(lpp,ψ)54.7°,ø) gFq1

k1(θ)]|m1|2|m2|2N(θ) (29)
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whereøi ) ø1 or ø2 and unknown parameters can be eliminated.
From four different selections of the polarization angleψ (ψ
* 0° or 90°), we can obtain eight linearly independent equations
of gFq1

k1(θ) (k1 ) 0, 2, 4). From the normalization condition on
Fg(θ), that is, TrFg(θ) ) 1, it follows that40

for a sharply definedJ1 state. Thus, we have enough inputs
for an absolute determination of the nine population and
alignment parameters of the selected internal state along various
scattering angles from 12 independent measurements. Ad-
ditional measurements at other polarization angles and transition
sequences can be employed to improve the accuracy of the
calculation.
In the case of the unpolarized detection mode, we can only

determine six state multipoles of even components, that is,
gF0

0(θ), gF0
2(θ), gF2

2(θ), gF0
4(θ), gF2

4(θ), andgF4
4(θ). Excluding eq

31, we need five linearly independent equations of state
multipoles. For transitions with three rotational branches (Σ -
Π), we can set up a simultaneous equation to determine these
six state multipoles by tuning the probe laser frequencies to
various resonances. For transitions with only two rotational
branches (Σ - Σ, Π - Π), we have to resort to the scheme of
the linearly polarized detection mode.
In the case of the circularly polarized detection mode, we

have the opportunity to determine orientation parameters,gF1
1

(θ), gF1
3(θ), andgF3

3(θ), provided that even rank state multipoles
have been known beforehand. In principle, three linearly
independent equations ofgF1

1(θ), gF1
3(θ), and gF3

3(θ) can be
found easily by selecting two different probe anglesø and tuning
the probe laser to various rotational branches.

VII. Fluorescence Image Patterns and v-J Correlations

To illustrate the application of the present formalism, it is
interesting to simulate the fluorescence image patterns of a
system with known state multipoles. For simplicity, we consider
a photofragmentation process so that photofragments A exhibit
only v-J correlation; that is, the angular momentum polarization
has no explicit dependence on the scattering angleθ. Two
limiting cases ofv-J correlations are considered: photofrag-
ments with a cartwheel motion (v ⊥ J) and photofragments with
a helicopter motion (v | J). In the language of density matrices,
the non-null matrix element for the cartwheel motion isFMM′
t |JM〉〈JM′| ) |J0〉〈J0|, where the projection of angular
momentum vector onto the quantization axis is null. In a
reference frame defined with itsZ′-axis along the recoil
direction, the density matrix of photofragments in a ground
electronic state isFg(cw) ) |J10〉〈J10|, where cw denotes the
cartwheel motion andJ1 is a rotational angular momentum
quantum number. Similarly, the non-null matrix elements for
a helicopter motion should beFJ1J1 ) 1/2 andF-J1-J1 ) 1/2. Its
density matrix is given byFg(hc)) 1/2[|J1J1〉〈J1J1| + |J1 - J1〉
〈J1 - J1|], where hc denotes the helicopter motion. The choice
of Fg(hc)) |J1J1〉〈J1J1| or |J1 - J1〉〈J1 - J1| is unacceptable for
the helicoper motion, due to the fact that neither of them satisfies
the reflection invariance of the density matrix in the scattering
plane.40 The ground state density matrix can be expanded in
terms of the irreducible tensor operatorT̃ q1

(k1)(aJ1,aJ1)

and

wherek1 is an even, positive integer for both cases. From the
transformation properties of the irreducible tensor operators, we
have

and

where T q1

(k1)(aJ1,aJ1) is defined in the SFF.gFq1
k1(cw,θ) and

gFq1
k1(hc,θ) are the state multipoles for the cartwheel and the

helicopter motion of photofragments, respectively. As soon as
we obtain the explicit forms of these state multipoles, we can
utilize the fluorescence intensity function in section VI to
calculate the fluorescence image patterns as functions of
experimental parameters.
For later developments, we first clarify the spectroscopic

terminology utilized in this work. In the numerical calculations,
we consider photofragments with the initialK1 quantum number
to be 0 or(1. This limitation corresponds to a consideration
of theΣ or Π electronic state of a diatomic photofragment. A
parallel or a perpendicular transition denotes the selection rule
on K to be∆K ) 0 or (1. Transitions of the P, Q, and R
branches represent their∆J selection rule to be-1, 0, and+1,
respectively. Only P and R branches are allowed for a parallel
transition fromK1 ) 0. We assume that spectroscopically
unresolved emissions are monitored such that a sum of
fluorescence intensities over the allowed P, Q, and R branches
should be executed in the calculation. Further, it is assumed
that the parallel or perpendicular characteristics of the absorption
process is preserved in the emission. For example, a parallel
transition from theK1 ) 0 level ends up in aK2 ) 0 state. In
the emission, only theK3 ) 0 state is allowed to account for
the preservation of the∆K ) 0 selection rule.
It should be reminded that only population (k1 ) 0) and

alignment parameters (k1 ) 2, 4) contribute to the fluorescence
intensity as long as linearly polarized fluorescence photons are
monitored in the present excitation scheme. For reference, the
numerical values ofgF0

k1(cw) andgF0
k1(hc) in the recoil frame

for k1 ) 0, 2, and 4 are listed in Table 6, in which both a low-J
(J1 ) 2) and a high-J (J1 ) 20) case are considered. According
to eq 27 and Table 6, we have calculatedI(unpol,ø,θ) as
functions of experimental parameters. These simulated fluo-
rescence patterns are depicted in Figures 9 and 10, in which
the following selections have been made: (1) the initialK1 )
0, (2) a perpendicular transition is considered, and (3) the
rotational angular momentumJ1 ) 2 or 20. From Figures 9

∑
k1q1

Xq1
k1(lpp,ψ1,øi)

gFq1
k1(θ)

∑
k1q1

Xq1
k1(lpp,ψ1,ø)0°) gFq1

k1(θ)
)

Iexp(lpp,ψ1,øi,θ)

Iexp(lpp,ψ1,ø)0°,θ)
(30)

gF0
0(θ) ) Ĵ1

-1 (31)

Fg(cw)) ∑
k1

(-1)J1k̂1(J1 J1 k1
0 0 0 )T̃ 0

(k1)(aJ1,aJ1) (32)

Fg(hc)) ∑
k1

k̂1(J1 J1 k1
J1 -J1 0 )T̃ 0

(k1)(aJ1,aJ1) (33)

Fg(cw)) ∑
k1q1

(-1)J1k̂1(J1 J1 k1
0 0 0 )dq10k1 (θ) Tq1

(k1)(aJ1,aJ1)

) ∑
k1q1

gFq1
k1(cw,θ) Tq1

(k1)(aJ1,aJ1) (34)

Fg(hc)) ∑
k1q1

k̂1(J1 J1 k1
J1 -J1 0 )dq10k1 (θ) Tq1

(k1)(aJ1,aJ1)

) ∑
k1q1

gFq1
k1(hc,θ) Tq1

(k1)(aJ1,aJ1) (35)
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and 10, distinctive differences between fluorescence intensity
functions forv | J andv ⊥ J of the same rotational branch are
the major feature. For photofragments with the samev-J
correlation, the different behavior ofI(unpol,ø,θ) under the P

and R branches in comparison with those under the Q branch
is another feature. WhenJ1 ) 20, the behavior ofI(unpol,ø,θ)
approaches that predicted by the classical picture of dipole
transition.41

Figure 5. Plots ofXq1
k1(lpp,ψ ) 54.7°,ø)versus probe angleø: (a) (J1 f

J2 f J3) ) (2 f 1 f 0); (b) (J1 f J2 f J3) ) (2 f 2 f 2); (c) (J1
f J2 f J3) ) (2 f 3 f 4).

Figure 6. Plots ofXq1
k1(lpp,ψ ) 54.7°,ø) versus probe angleø: (a) (J1

f J2 f J3) ) (20f 19f 18); (b) (J1 f J2 f J3) ) (20f 20f 20);
(c) (J1 f J2 f J3) ) (20 f 21 f 22).
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For a parallel transition from theK1 ) 0 level, the
fluorescence pattern under the Q branch should be deleted.
Regarding the behavior of fluorescence patterns under the P
and R branches, we have found by numerical calculations that
fluorescence patterns for the parallel transition are almost
identical to those reported in Figures 9 and 10. We have also
calculated fluorescence patterns from theK1 ) 1 level for both
the parallel and the perpendicular transitions. Those simulated

fluorescence patterns are quite similar to the corresponding
frames in Figures 9 and 10.
To visualize the simulated image patterns, we have combined

prototypical results in Figure 10 (J1 ) 20, ø ) 0°) with the
angular distribution functionN(θ) ) (4π)-1[1 + âP2(cosθ)],
where P2 is a second-order Legendre polynomial and the
anisotropy parameterâ is chosen to be 0 (isotropic), 2 (cosine-
squared), and-1 (sine-squared). A Gaussian velocity spread
of photofragments has been implemented in the computer
program such that the fluorescence images are easily discernible.
In Figure 11, we reproduce these simulated fluorescence image
frames. A unique correspondence between image patterns and
physical observables can be established. This pattern recogni-
tion is useful to identifyv-J correlations by visual inspection.
Focusing on the same issue, Siebbeles et al.,46 Cline and co-
workers,47 and Suzuki and co-workers48 have advanced our
knowledge onk′-J′ correlations from both theoretical treat-
ments and experimental studies.

VIII. Discussion
In section III, the propagation direction of the probe laser

sheet is chosen to be along theX-axis of the SFF. As a matter

Figure 7. Plots ofXq1
k1(cpp,L,ø) versus probe angleø: (a) (J1 f J2 f

J3) ) (2 f 1 f 0); (b) (J1 f J2 f J3) ) (2 f 2 f 2); (c) (J1 f J2
f J3) ) (2 f 3 f 4).

Figure 8. Plots ofXq1
k1(cpp,L,ø) versus probe angleø: (a) (J1 f J2 f

J3) ) (20f 19f 18); (b) (J1 f J2 f J3) ) (20f 20f 20); (c) (J1
f J2 f J3) ) (20 f 21 f 22).

Figure 9. Plots of simulatedI(unpol,ø,θ) for J1 ) 2 versus scattering
angleθ. Frames a, b, and c are for the case ofv | J. Frames d, e, and
f are for the case ofv ⊥ J. The∆J selection rule (rotational branch)
of each row is marked by P, Q, or R on the right margin. As an
example, frames b and e have∆J ) 0 (Q branch). For clarity, plots
of I(unpol,ø,θ) for ø ) 0° (s), 45° (-‚-), and 90° (- - -) are presented.

TABLE 6: Numerical Values of State Multipoles

state multipole v ⊥ J v | J
gF0

k1(J1)2) k1 ) 0 0.447 21 0.447 21
k1 ) 2 -0.534 52 0.534 52
k1 ) 4 0.717 14 0.119 52

gF0
k1(J1)20) k1 ) 0 0.156 17 0.156 17

k1 ) 2 -0.174 76 0.324 56
k1 ) 4 0.176 22 0.366 94
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of fact, this choice is quite flexible, as long as the plane defined
by the polarization direction of the photolysis laser and the
moving direction of the precursors is sliced. In other words,
identical information of state multipoles can be obtained in
various experimental configurations, provided that the propaga-
tion direction of the probe laser is rotated in theX-Z-plane.
To compare the experimentally measured state multipoles

with the bipolar moments in the formalism of Dixon,12 the first
step is to transform the reference frame from the SFF to the
recoil frame. From previous results, we haveFg ) ∑k1q1q2

gFq1
k1

(θ) dq1q2
k1 (θ) T q2

(k1)(aJ1,aJ1), whereT q2

(k1)(aJ1,aJ1) is defined in the
recoil frame along the scattering angleθ. BecauseT q2

(k1)† can
be expressed as a linear combination of bipolar harmonics
employed by Dixon,12 one can find the correspondence between
state multipoles and bipolar moments by taking the trace of
FgT q2

(k1)†. We will not proceed further on this subject in the
present report.
If the Newton sphere of products is uniformly excited by a

linearly polarized probe laser beam, we can sum contributions
from successive layers to obtain the Doppler profile function
D(ν,ø) in a typical Doppler spectroscopic measurement.49 For
example, the Doppler profile function in an unpolarized detec-
tion mode under the condition of the proposed excitation
geometry can be proven to be

wheref(V) is a velocity distribution function,ν0 is the unshifted

resonance frequency, andν is the probe laser frequency.gFq1
k1

(θ) in the above equation is defined in the recoil frame. In the
presence ofk′-J′ correlations, these state multipoles have
explicit dependences on the scattering angleθ. Therefore, the
Radon transform50 in eq 36 will mix every term in the integrand
together. D(ν,ø) cannot be expressed as a linear combination
of gFq1

k1(θ). Thus, the correlation of angular momentum polar-
izations with the recoil directions is either scrambled or averaged
out in any projection experiment, unless reaction products
exhibit onlyv-J correlations and display nok′-J′ correlations.
On the other hand, the proposed detection scheme can measure
state multipoles without a priori knowledge onN(θ) and f(V).
We conclude that the proposed detection scheme which employs
fluorescence-imaging techniques has advantages over the con-
ventional projection experiments.
For reaction products with high recoil velocities, their Doppler

shifts can exceed the bandwidth of the probe laser. Under the
circumstances, one should tune the probe laser frequencies
across the whole range of the Doppler width and sum the
resultant image frames before analyzing the fluorescence image
patterns.
It is difficult to compare the present formalism with previous

treatments, for example, the theoretical framework developed
by Kummel, Sitz, and Zare.18 Kummel et al. employed the
tensor contraction method and chose the alignment as well as
the orientation moments to be real. In our analysis, the only
constraint on the state multipoles is the reflection invariance of
the density matrix in the scattering plane (see eqs 3 and 4).
Thus, alignment and orientation moments in the work by
Kummel et al.18 must be a linear combination of the state

Figure 10. Plots of simulatedI(unpol,ø,θ) for J1 ) 20 versus scattering
angleθ. See the figure caption of Figure 9 for a detailed description.

Figure 11. Simulated image patterns of photofragments for the case
of J1 ) 20 and probe angleø ) 0°: (a) P branch; (b) Q branch. To
read these images, each row corresponds to a specific motion (v | J or
v ⊥ J), and each column is for a chosen anisotropy parameterâ (0, 2,
or -1). Each image is oriented such that theZ-axis of the SFF lies
horizontally in the plane of the figure and bisects the square that
surrounds the image. Fluorescence intensities of each image frame
have been normalized to the same scale. See Figure 10 for information
on relative intensities.

D(ν,ø) )∫V2 sinθ[ ∑
k1q1q2

Xq2
k1(unpol,ø) ×

Dq2q1

k1 (φ,θ,0) gFq1
k1(θ)]|m1|2|m2|2N(θ) f(V) ×

δ[ν - ν0(1+
V

c
sinθ cosφ)] dV dθ dφ (36)
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multipoles in the present formalism. These two formalisms
should be equivalent. We also noted that symmetry-adapted
differential cross sections have been utilized in a recent
publication by Zare and co-workers.31 In our framework, there
are three criteria to judge the validity of the fluorescence
intensity function; they are: (1) the fluorescence intensity
function should be real; (2) simulated fluorescence intensities
cannot be negative; (3) simulated fluorescence image patterns
with v-J correlations should be consistent with the classical
picture of dipole transitions whenJ1 is large. These criteria
are met in every respect. To explore the experimental advantage
of an elliptically polarized excitation scheme, we have studied
this alternative method in detail and will publish it elsewhere.

IX. Conclusions

We have proposed a fluorescence imaging experiment to
determine state multipoles of the density matrix of reaction
products along various recoil directionsk′. Information onk′-
J′ correlations of reaction products can be obtained by monitor-
ing the intensity variations of the image patterns as a function
of the probe anglesø and transition sequences.
From detailed analyses of the 1+ 1 LIF detection scheme,

we have shown that population (gF0
0(θ)) and alignment param-

eters (gF0
2(θ), gF1

2(θ), gF2
2(θ), gF0

4(θ), gF1
4(θ), gF2

4(θ), gF3
4(θ), gF4

4

(θ)) of reaction products in a specific quantum state can be
uniquely determined experimentally. For the present detection
scheme in which the probe laser sheet is linearly polarized,
orientation parameters (gF1

1(θ), gF1
3(θ), gF3

3(θ)) of reaction
products can be determined by monitoring circularly polarized
fluorescence photons. Fluorescence intensity functions of the
image patterns are given explicitly as functions of the probe
angle ø and angular momentum quantum numbers in the
transition sequence. A simulation study has been implemented
to establish a pattern recognition of fluorescence images of
photofragments withv-J correlation. We expect that the study
of k′-J′ correlations of reaction products should lead to new
information on the anisotropy of potential energy surfaces of
reactive systems.
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